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ABSTRACT
This paper deals with collision handling of many convex shapes in

offline simulations of Modelica-like object-oriented models, using

variable-step integrators with error control. Hereby, it is assumed

that collisions appear only from time to time and/or that path

planning algorithms shall utilize the provided information for colli-

sion avoidance. Improvements to the Minkowski Portal Refinement

(MPR) algorithm are proposed, as well as enhancements so that

zero-crossing functions can be provided for the integrator in order

to trigger events when contact starts and ends. The algorithms

are demonstrated with a prototype implemented with the Julia

programming language.
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1 INTRODUCTION
The goal is to introduce collision handling in object-oriented mo-

deling languages such as Modelica [1]. In particular this means

that contact handling must be suited for variable-step integrators,

as used in offline simulations of Modelica environments. Collision

handling is a large area with a huge literature, especially in the field

of computer games. A survey of collision detection methods for

convex and concave rigid bodies as well as for deformable shapes

is for example given in [2, 19]. In [24] an overview of response

calculation methods is given based on impulses. Enhancing Mo-

delica with contact handling is proposed in [3, 9, 17, 23]. Nearly

all of the literature in this field is devoted to real-time simulation

engines utilizing integrators with fixed-step sizes and without error
control. On the other hand, off-line simulation engines, especially
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of object-oriented modeling languages, typically use variable-step
integrators with error control. Whenever a collision occurs, the mo-

del response is drastically changed and variable-step integrators

perform usually no longer well, if such a change is just discontinu-

ously applied. Instead, both the efficiency and the precision of the

result are improved if state events are generated at the start and

end of a contact, provided contact situations only occur from time

to time, see e.g. [23].

Below, proposals are made for how to utilize collision handling

for elastic contacts with classical variable-step integrators. If there

are many collisions, QSS integrators [12] might be more appro-

priate. A prototype implementation has been made with the Julia

programming language [6] and the plan is to include this imple-

mentation into the equation based and object-oriented modeling

system Modia [10, 11] – a domain-specific extension of Julia. Visu-

alization of the 3D scenes is performed with the freeware version

of SimVis [4, 14], a visualization system of DLR based on OpenSce-

neGraph
1
.

2 MATHEMATICAL DESCRIPTION
In this paper Differential-Algebraic Equations (DAEs) of the follo-

wing form shall be treated

0 =

[
fd ( Ûx ,x , t , zi > 0)

fc (x , t , zi > 0)

]
(a)

z = fz (x , t) (b)

J =


∂ fd
∂ Ûx
∂ fd
∂x

 is regular, (c) (1)

where x = x(t). The Jacobian (1c) is required to be regular. The-

refore (1a) is an index 1 DAE. (1b) defines zero-crossing functions

z(t). Whenever a zi (t) crosses zero the integration is halted, functi-

ons fd , fc (1a) might be changed (for example by providing elastic

material laws at a contact) and afterwards integration is restarted.

With the algorithms proposed in [22] a large class of DAEs can be

transformed to (1) without solving algebraic equations and retaining
the sparsity of the equations2. This includes 3D mechanical systems

with kinematic loops, electrical circuits, hydraulic circuits, thermo-

fluid networks and others. In particular, with the Modia prototype

[10, 11] physical systems of these types can be defined on a high

level and are then automatically transformed to (1). A number of

methods exist for solving (1) numerically. In particular, under mild

conditions Backward Differentiation Formula methods with order

k and fixed or variable-step size h converge with O(hk ), see [7, pp.

1
OpenSceneGraph: http://www.openscenegraph.org/

2
Usually, Modelica tools transform DAEs to ODEs (Ordinary Differential Equations in

state space form). Hereby, linear and/or nonlinear algebraic equations might need to

be solved and the sparsity of the equations might get lost.

https://doi.org/10.1145/3158191.3158193
https://doi.org/10.1145/3158191.3158193
http://www.openscenegraph.org/
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51–54]. This means that a DAE integrator such as Sundials IDA

[15, 16] can solve such systems.

The objective of the remaining sections is to provide zero-cross-

ing functions z (1b) for systems where many shapes may potentially

collide. For simplicity, only convex shapes shall be treated and the

collision response shall be computed with elastic material laws.

State events shall be triggered whenever contact starts or ends

using the root finding option of classic variable-step integrators. For

collision handling, the signed distances between the shapes are used

as zero-crossing functions zi . Hereby the convention is used that

the signed distance δ between two convex shapes is positive, when

the shapes are not in contact, it is zero when they touch each other,

and it is negative otherwise. In the following, one goal is therefore

to compute the signed distances between convex shapes.

3 COLLISIONS OF CONVEX BODIES
It is standard to perform collision handling of n potentially colliding

shapes with fixed-step integrators in the following way:

1. Broad phase
The shapes are approximated by other shapes where col-

lision can be very cheaply determined. Furthermore, the

approximated shapes can be placed in a hierarchy so that all

direct and indirect children of a node cannot penetrate, if a

collision is not possible for the node. Typically, O(n loд(n))
collision tests are being made in this phase, instead of O(n2)
tests.

2. Narrow phase
The signed distances are computed for the potentially col-

liding shape pairs that have been identified in the broad

phase.

3. Response calculation
If two shapes are penetrated, either a finite force and/or tor-

que is applied at the contact point, such as a spring/damper

force element, depending on the penetration depth. Alterna-

tively, a force/torque impulse is applied that leads to discon-

tinuous changes of the velocities/angular velocities of the

shapes.

There are several algorithms to compute the signed distance be-

tween two convex shapes. In particular, the following approach

seems to be widely used and it is claimed that it is one of the fastest
methods currently available [5]:

1. Describing convex shapes with support mappings
Convex shapes are defined with functions support(A,n) that
return a point on the boundary of shape A that is farthest

away in direction of vector n. Support functions for polyto-
pes, spheres, cylinders, cones, ellipsoids, convex hulls, etc.

are for example given in [5, 20].

2. Transforming a shape-shape to a point-shape distance problem
The Minkowski difference A ⊖ B of two shapes A and B is

defined as (rA, rB are absolute position vectors of points in

A and B respectively):

A ⊖ B =
{
rA − rB : rA ∈ A, rB ∈ B

}
. (2)

The Minkowski difference of two convex shapes A and B is

convex, its support point is support(A,n) − support(B,−n),
and the distance between A and B is the distance of A ⊖ B

from zero. This distance is unique (so exactly one point

on the boundary of A ⊖ B is closest to zero). For proofs of

these properties, see for example [5]. Computing the distance

between two convex shapes can therefore be transformed

to the much simpler problem of determining the distance of

one convex shape (= A ⊖ B) from the origin.

3. Computing the closest distance with the GJK algorithm
The GJK (Gilbert-Johnson-Keerthi) algorithm and its impro-

ved versions [5, 13] compute the closest distance between a

convex shape and the origin, provided the origin is outside

of the shape (= distance of non-penetrating shapes). The

approach is conceptually simple by using support mappings

to construct in the 3D case appropriate 0,1,2,3-simplexes

(= points, lines, triangles, tetrahedrons) where the vertices

of the simplexes are on the boundary of the shape and the

simplexes are constructed to move closer and closer to the

origin. If no further progress is possible and the origin is

outside of the shape, then the closest distance of the shape

from the origin is the closest distance of the final simplex

from the origin. For penetrating shapes, the GJK algorithm

stops with a simplex that has the origin in its interior.

4. Computing the penetration depth with EPA
The EPA (Expanding Polytope Algorithm) by v.d. Bergen [5,

sec. 4.3.8] computes the closest distance of a convex shape

from the origin, if the origin is in the interior of the shape.

The algorithm starts from the final simplex of the GJK al-

gorithm and then expands the simplex to a polytope where

in every iteration a new (support point) vertex is added. If

no further progress is possible, the penetration depth is the

closest distance of the final polytope from the origin.

5. Determine contact points on the shapes
The (unique) contact point found in the Minkowski diffe-

rence is transformed back to the (potentially non-unique)

contact points on shapes A and B using the barycentric coor-

dinates of the contact point with respect to the final simplex

or polytope.

The GJK and EPA algorithms are conceptually simple, but the im-

plementation is non-trivial and elaborate due to the many special

cases (e.g. handling 0,1,2,3-simplexes in all situations) and due to

various numerical problems that might occur when selecting the

next simplex or computing a termination condition. This might

be the reason why no robust open source implementation with a

permissive free license seems to be available for the 3D-case.
3

Based on the Minkowski difference, Snethen [26] proposed the

Minkowski Portal Refinement (MPR) algorithm to detect whether

two convex shapes penetrate and if this is the case compute an

approximation of the penetration depth. The MPR algorithm in

3D is much simpler than GJK/EPA because it operates basically

with triangles. The drawback is that MPR may only compute an

approximation of the penetration depth in some situations. In [20]

GJK/EPA and MPR are compared with several millions randomi-

zed benchmarks with various shape types. In [18] a nice, compact

pseudo-code for the MPR algorithm is given and it is shown that

3
The GJK/EPA based software solid3 from v.d. Bergen, https://github.com/dtecta/solid3,

is available under GPL license.

https://github.com/dtecta/solid3
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MPR can also be utilized to compute the closest distance of non-

penetrating convex shapes.

The BSD-licensed open source C-library libccd
4
provides an

implementation of the MPR algorithm. It is used for example in

the open source Bullet Physics SDK
5
. However, libccd does not

compute the distance of non-penetrating shapes and can therefore

not be used as basis of the investigation of this paper.

As will be shown below, the MPR algorithm can be used to com-

pute zero-crossing functions for variable-step integrators since the

potential approximation of the exact distance does not matter in

this case. Response calculations based on penetration depths can
only give a reasonable approximation of reality, if the penetration
volume is small enough. In such cases, MPR computes usually the

exact penetration depth. For these reasons, and since MPR is a rea-

sonable simple algorithm, it will be used in the following. Previous

publications of the MPR algorithm [18, 20, 26] are incomplete, be-

cause the handling of special cases is not defined, the termination

conditions are incomplete and the signed distance is unnecessarily

approximated [18]. The improved version of the MPR algorithm

below fixes these issues.

4 IMPROVED MPR ALGORITHM
In this section an improved version of the MPR algorithm is pro-

posed and defined in form of a Julia/Matlab like pseudocode. The

algorithm has the following interface:

(δ ,eA,rA,rB ) = mpr(A,B, tolr el = 10
−4, imax = 100). (3)

The input and output variables have the following meaning:

A,B Convex or concave shapes A and B.
tolr el The relative tolerance used for the approximation of the

distance (default = 10
−4
).

imax Maximum number of iterations to avoid infinite looping

(default = 100).

δ Signed distance between A and B. δ > 0 if the shapes

are not in contact, δ = 0 if the shapes are touching and

δ < 0 if the shapes are penetrating. If a shape is concave,

the distance computation is performed with respect to

its convex hull
6
.

rA,rB The absolute position vectors to a point on the boundary

of shapeA and to a point on the boundary of shapeB that

are closest to each other if the shapes are not in contact

and that have the largest penetration depth along eA, if
the shapes are in contact.

eA A unit vector such that rB − rA = δeA. If the surface
around rA is differentiable, eA is normal to A in rA.

The following utility functions must be provided for the shapes

rs = support(A,e)

rc = centroid(A).
(4)

Function support(A,e) computes the position vector rs to a point

on the boundary of A that is farthest away in the direction of the

4
libccd: https://github.com/danfis/libccd

5
bullet3: https://github.com/bulletphysics/bullet3

6
Support mappings are also defined for concave shapes and result in the convex hull

[5]. The distance between the convex hulls of two concave shapes can be useful for

collision avoidance algorithms, as well as for cheap, precise tests whether contact is

possible for deformable shapes, see for example [25].

unit vector e . Function centroid(A) computes the position vector

to the centroid of shape A or to an internal point that is close to it.

The support point of the Minkowski difference A ⊖ B is calculated

with (4), according to (2) as:

S = support(A,B,e) (5)

and

S .rA = support(A,e)

S .rB = support(B,−e)

S .r = S .rA − S .rB

S .e = e .

The (overloaded) function returns a structure S , and in particular

S .r which is the absolute vector to the boundary of the Minkowski

difference closest to the origin in direction of unit vector e (= the

support point of the Minkowski difference).

Below, the parts of the algorithm that are displayed in light

blue color are not present in publications about MPR [18, 20, 26].

These improvements involve the handling of unphysical collision

situations and in some collision cases (e.g. two spheres are colli-

ding) the signed distance δ can be computed directly (TC1). These

enhancements are explained in sections 4.1 and 4.2.

4.1 Determining the initial portal
In the first phase, the goal is to construct a tetrahedron with a non-

zero volume such that point r0 is in the interior of the Minkowski

difference of the shapes A and B and the three points r1, r2 and
r3 are points on its boundary. The triangle constructed by these

three points is called portal (figure 1). Furthermore, the ray from r0
through the origin shall go through the portal. Two typical examples

are shown in the next figure:

δ

r0

r1

r2

r3

portal

(a) penetration

δ

r0

r1

r2

r3

portal

(b) no penetration

Figure 1: MPR portal for penetrating and non-penetrating
shapes.

The first point r0 has to be in the interior of A ⊖ B:

r0 = centroid(A) − centroid(B)

if |r0 | ≤ ε

error("Too large penetration.")

end

(6)

If |r0 | = 0, a division by zero will occur in (7). The reason is that the

centre of theMinkowski difference is exactly in the origin, so shapes

https://github.com/danfis/libccd
https://github.com/bulletphysics/bullet3
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A and B are largely overlapping. However, the MPR algorithm is

based on the prerequisite that a ray from r0 to the origin passes

the portal. If the portal and the origin are on different sides of r0,
or if r0 = 0, the algorithm does no longer work. In order to guard

against overflow and numerical inaccuracies, here and below a

small number ε is used (say ε ≈ 10
−12

).

The first portal point r1 is found by searching from point r0
towards the origin:

e1 = −
r0
|r0 |

S1 = support(A,B,e1)

r1 = S1.r

(7)

The second portal point r2 is found by searching in the direction

of a vector that is perpendicular to r0 and r1:

n2 = r0 × r1

if |n2 | ≤ ε (TC1)

δ = −r1 · e1

return (δ ,e1, S1.rA, S1.rB )

end

e2 =
n2

|n2 |
(8)

S2 = support(A,B,e2)

r2 = S2.r

If |n2 | = 0 in (8), a division by zero would occur. The reason is

that r1 is on the ray from r0 through the origin, as visualized in

figure 2. Since r1 is already the closest point to zero in situation

(TC1), the signed distance δ can be directly computed and the

collision calculation can be terminated.

e1

r1

r0

|r0 × r1| = 0

δ

Figure 2: r1 is on the ray from r0 through the origin.

This situation occurs for example, whenever two spheres are colli-

ding or if the closest points are on the line through the centroids of

the two shapes.

The third portal point r3 is found by searching in the direction

of a vector that is perpendicular to r1 − r0 and r2 − r0 and points

towards the origin:

n3 = (r1 − r0) × (r2 − r0)

if |n3 | ≤ ε

S2 = support(A,B,−e2); r2 = S2.r

if |(r2 − r1) · e2 | ≤ ε

error("Shapes are too thin.")

end

n3 = (r1 − r0) × (r2 − r0)

end

e3 =
n3

|n3 |
# |n3 | = 0 is not possible (9)

e3 = −e3 if e3 · r0 > 0

S3 = support(A,B,e3)

r3 = S3.r

n3c = (r2 − r1) × (r3 − r1)

if |n3c | ≤ ε

S3 = support(A,B,−e3)

r3 = S3.r

if |(r3 − r1) · e3 | ≤ ε

error("Shapes are too thin.")

end
end

If |n3 | = 0 in the second line of (9), a division by zero would occur.

The reason is that r2 is on the ray from r0 to r1. This situation is

depicted in figure 3.

r0

r2

r1

|(r1 − r0)× (r2 − r0)| = 0

Figure 3: r2 is on the ray from r0 through r1.

In order to proceed, it is tried to find another portal point r2 by
searching in the opposite direction of e2. If the newly found r2 is
in the plane or close to it that is perpendicular to e2 and contains

r1, then the Minkowski difference of the two shapes is planar (or

very thin). Collision detection would then require to proceed with

a 2D version of the MPR algorithm (using a line and not a triangle

for the portal). However, in 3D it makes no sense to compute a

penetration depth of a shape with zero volume. For this reason, an

error is triggered.

In case the new r2 is not in this plane, n3 can be re-computed

with the new r2 and it is then guaranteed that |n3 | cannot be zero,

so a division with |n3 | can be performed.

At the end of (9),n3c is computed as a vector that is perpendicular

to r2 −r1 and to r3 −r1. If this vector is a zero vector, r1, r2 and r3
are on one line and the triangle of these three points has a zero area.

To proceed, r3 is newly computed with an opposite search direction

−e3. If the newly found r3 is in the plane that is perpendicular

to e3 and contains r1, then the Minkowski difference of the two

shapes is planar or very thin and again an error message is triggered.

Otherwise, it is guaranteed that the newly computed r3, together
with r1, r2 form a triangle that has a non-zero area.

The portal points r1, r2 and r3 are now modified so that the ray

from r0 through the origin passes through the newly constructed
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portal. This is achieved by searching for new support points if the

goal is not yet reached:

success = f alse

for i = 1 : imax

n4 = (r1 − r0) × (r3 − r0)

if n4 · r0 < −ε

S2 = S3

r2 = S2.r

S3 = support(A,B,
n4

|n4 |
)

r3 = S3.r

else
n4 = (r3 − r0) × (r2 − r0)

if n4 · r0 < −ε

S1 = S3;

r1 = S1.r

S3 = support(A,B,
n4

|n4 |
) (10)

r3 = S3.r

else
n4 = (r2 − r1) × (r3 − r1)

if |n4 | ≤ ε

error("Should not occur (reason is unclear).")

end

e4 =
n4

|n4 |

e4 = −e4 if e4 · r0 > 0

success = true; break
end

end
end
if not success

error("Max. number of iterations reached.")

end

The for-loop iterates until the ray goes through the portal or the

maximum number of iterations is reached. In the latter case the

algorithm is terminated with an error. With every iteration a new

support point is computed and one of the previous support points

is replaced by the new one. When computing the support structure

S3, a division by zero cannot take place, because this structure is

only computed if n4 · r0 < −ε .
Once the ray goes through the portal, the normal n4 to this

portal is computed. If |n4 | ≤ ε , the portal points r1, r2 and r3
are located on one line or in one point and the area of the portal

triangle is zero (and the ray goes through this line or point). It is

then no longer possible to continue with the algorithm and an error

is triggered. On the other hand, if |n4 | > ε , it is guaranteed that the
portal triangle has a non-zero area and the algorithm continues.

4.2 Determining the portal closest to the origin
The goal of the next phase is to reduce the size of the portal and

position it closer to the origin until no further progress is possible.

This is performed in an iterative way by computing in every itera-

tion one new support point r4 and then determining through which

of the three triangles (r1,r2,r4), (r2,r3,r4) and (r3,r1,r4) the ray
from r0 through the origin is passing. This triangle is then used as

a (smaller) new portal that is closer to the origin. A typical example

is shown in figure 4. Note, termination conditions are marked in (8)

r0

r1

r2

r3

r4

Figure 4: The next portal is (r2,r3,r4), because the ray from
r0 through the origin passes this triangle.

and below as (TCx). The following algorithm performs the desired

actions:

for i = 1 : imax

S4 = support(A,B,e4) (11)

r4 = S4.r

if |(r4 − r1) · e4 | ≤ tolr el (TC2)

(δ ,r4,e4b ) = distanceToPortal(r1,r2,r3,e4)

(r4A,r4B ) = barycentric(S1, S2, S3,r4,e4)

return (δ ,e
4b ,r4A,r4B )

end
if isNextPortal(r0,r1,r2,r4) (12)

S3 = S4; r3 = S3.r

elseif isNextPortal(r0,r2,r3,r4)

S1 = S4; r1 = S1.r

elseif isNextPortal(r0,r3,r1,r4)

S2 = S4; r2 = S2.r

else
error("Should not occur (reason is unclear).")

end
n4 = (r2 − r1) × (r3 − r1)

e4 =
n4

|n4 |
# |n4 | = 0 is not possible

end
error("Max. number of iterations reached.")

The function distanceToPortal(..) determines the point r4 in the

interior or on the boundary of the triangle r1,r2,r3 that is closest
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to the origin and δ = r4 · e4 ≤ 0 ? |r4 | : −|r4 |. If r4 is in the interior

of the triangle e
4b = e4. Otherwise, e4b = |r4 | > ϵ ? − r4/|r4 | : e4,

so that r4B − r4A = δe
4b .

The function barycentric(..) expresses r4 with barycentric coor-

dinates of r1, r2 and r3 and then uses the same barycentric coordi-

nates on shapesA and B utilizing the corresponding support points,

see for example [5].

The function isNextPortal(..) returns true if the ray of r0 through
the origin passes the selected triangle:

isNextPortal(r0,r1,r2,r4) =

((r2 − r0) × (r4 − r0)) · r0 ≤ 0 and
((r4 − r0) × (r1 − r0)) · r0 ≤ 0.

(13)

In this final phase, the for-loop iterates until the portal closest

to the origin is found or the maximum number of iterations is

reached. In the latter case an error is triggered. The algorithm is

terminated if the new support point r4 is on the plane of the portal

(so |(r4 − r1) · e4 | = 0), that is, if no further progress is possible and

the portal is the closest one to the origin (to which the ray passes).

This situation is depicted in figure 5. As can be seen, the signed

r0r0

closest point

r1 r1r2
r2

portal portal

Figure 5: Closest point to zero of polyhedra.

distance is then either the perpendicular distance of the portal to

the origin (see left part of figure 5) or it is the closest distance of

one of the vertices or one of the edges of the triangle (see right part

of figure 5). Therefore, the function distanceToPortal(..) is called to

determine the shortest distance of the portal triangle to the origin.

The returned point r4 is on the portal. This point is mapped to a

point on shape A and shape B with function barycentric(..).

If the termination condition is not fulfilled, r4 cannot be on the

plane of the portal. Therefore, it is possible to select either r1,r2,
or r2,r3 or r3,r1 that form together with r4 a new portal that is

smaller and closer to the origin and the ray from r0 to the origin

passes it. Since it is guaranteed that the area of the new triangle is

not zero, |n4 | > 0 and a division by |n4 | is allowed.

4.3 Properties of improved MPR
The following properties of the improved MPR algorithm are used

for the collision handling with variable-step integrators. These

properties are summarized in the following new theorems. Hereby,

A and B are convex shapes and δmpr is the signed distance returned

by function mpr(A,B) under the assumption that computations are

performed with infinite precision (and tolr el = 0, imax = ∞).

Theorem 4.1. (Contact detection).
The following holds:
1. δmpr > 0: A and B are not in contact to each other.

2. δmpr = 0: A and B are touching each other.
3. δmpr < 0: A and B are penetrating each other.

Proof. If shapesA and B are not in contact, the origin is located

outside of the Minkowski difference A ⊖ B. If they are penetrating,

the origin is inside A ⊖ B, and if they are touching, it is on the

boundary ofA⊖B. If function mpr(A,B) is terminating successfully,

the relationship between the ray from r0 to the origin through the

final portal is always well-defined and the contact situation follows

automatically:

• Assume function mpr(..) terminates due to (TC1):
In such a case r1 is located on the ray and no shape point

is beyond the plane (in direction of the ray) that is perpen-

dicular to the ray through point r1. Therefore, if the origin
is between r0 and r1, it is inside A ⊖ B (so δmpr < 0 and

shapes A and B are penetrating). If r1 = 0 the shapes are

touching (δmpr = 0). If r1 is between r0 and the origin, then
the origin is outside of A⊖ B (so δmpr > 0 and shapes A and

B are not in contact).

• Assume function mpr(..) terminates due to (TC2):
In such a case, no shape point is beyond the portal plane

(in direction of the ray). If the origin is on the same side of

the plane as r0, then the ray from r0 passes first the origin
and then the portal. Therefore, the origin is inside A ⊖ B
(so δmpr < 0 and shapes A and B are penetrating). If the

origin is on the plane, then the ray from r0 passes the origin
and this is only possible if the origin is on the portal. Since

(TC2) implies that the portal is on the boundary, the origin

is on the boundary of A ⊖ B and the shapes are touching

(δmpr = 0). If the origin is on the opposite side of the plane

as r0, it is outside of A⊖ B (so δmpr > 0 and shapes A and B
are not in contact).

�

Theorem 4.1 is sufficient in order that δmpr can be used as zero-

crossing function for a variable-step integrator: It is standard for

variable-step integrators with root-finding support to evaluate a

zero-crossing function zi (t) at time instant tj + h of a completed

integrator step with step-size h. If zi (tj ) · zi (tj + h) ≤ 0 an interval

[tj , tj +h] is determined in which zi crosses zero. Several algorithms

with guaranteed convergence are known to reduce the interval in

which the zero-crossing takes place until a prescribed tolerance

for the final interval is met. For example, the integrators of the

Sundials suite use a modified secant method [16, sec. 2.3], whereas

the integrator DASSL [7] uses the method of Brent [8, pp. 58–59].

In both cases the interval is successively reduced in every iteration.

Hereby, the only needed property is the sign of zi (which is provided
by the MPR algorithm according to theorem 4.1: zi = δmpr,i ). If

zi (t) is additionally smooth, convergence is faster (for example, in

case of the method of Brent [8], convergence is super-linear).

The distance δexact > 0 between two shapes A and B that are not
in contact to each other is most naturally defined as the shortest

Euclidean distance (see e.g. [21]):

δexact = min

{
|rA − rB | : rA ∈ A, rB ∈ B

}
.

The following theorem defines how δmpr is related to δexact .
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Theorem 4.2. (Closest distance).
If δmpr > 0, the following holds:
1. If termination occurred via (TC2) and r4 (returned by function

distanceToPortal(..)) is not located on one of the edges or vertices
of the portal triangle, or termination occurred via (TC1), then

δmpr = δexact .

2. If termination occurred via (TC2) and r4 is located on one of
the edges or vertices of the portal triangle, then

0 < −r4 · e4 ≤ δexact ≤ δmpr .

Proof. Assume 1. holds: The closest point to zero is r1 in case

of (TC1) and r4 in case of (TC2) due to the proof of theorem 4.1.

Since these vectors are in parallel to their search direction, their

absolute value is the closest distance, so δmpr = δexact .
Assume 2. holds: No shape point is beyond the portal plane (in di-

rection of the ray). Therefore, a lower bound for the closest distance

is the projection of r4 on the plane normal: −r4 · e4 ≤ δexact . On
the other hand, the closest distance δexact cannot be larger than
|r4 | = δmpr . �

Theorem 4.2 states that theMPR algorithm either returns the closest

distance of two non-penetrating shapes or an upper bound.

Contrary to non-penetrating shapes, there are various useful

definitions for the (exact) signed distance if shapes A and B are in

contact to each other, in particular:

Definition 4.3. (Penetration depth). [5, p. 36]
The penetration depth of an intersecting pair A and B is the length

of the shortest vector over which one of the shapes needs to be

translated in order to bring the pair in touching contact:

δexact (A,B) = inf

{
∥r ∥ : r < A ⊖ B

}
.

There are also definitions which take shape rotations into account.

δexact is the simplest definition that is based on pure geometric

properties at the actual time instant. The drawback of all pure

geometric definitions is that a dynamic movement of shapes may

lead to unphysical discontinuities in the contact points, see figure 6.

direction of motion (dm)

δexact
δexact = δdm

δdm
δexact δexact 6= δdm

|δexact| < |δdm|

shape A

shape B

Figure 6: Discontinuities in penetration depth computation.

Here, shape B moves from left to right and penetrates box shape A.
If the penetration δdm is large enough, the (translational) penetra-

tion depth δexact is physically wrong. There are proposals to fix

this issue, by taking the movement of the contact points (so past

geometric properties) into account, see for example [27]. In figure 7

this issue is analyzed in more detail:

sphere P1a

P2a

polytope

P3a

δexact = δmpr

ray2

P1b
P2b P3b

δmpr

face1

face2

Figure 7: Penetration depth computation sphere - polytope.

A sphere is sliding on a polytope from left to right along the dot-

ted arrow. If the lower point of the sphere arrives point P
1b , the

penetration depth is the orthogonal distance to face1, so |δexact | =

P1aP1b = |δmpr |, which in turn is also the distance computed by

the MPR algorithm. Once the lower point of the sphere arrives a

point where the distance to face2 becomes smaller as the distance

to face1 (here: point P
3b ) the contact point on the polytope jumps

discontinuously from face1 to face2 and |δexact | = P3aP3b = |δmpr |.

This means that the response calculation will be unphysical. The

MPR algorithm introduces a slightly different discontinuity: Once

the polytope and the sphere centroids are on a line (= ray2) that

passes vertex P2a , the MPR algorithm terminates with condition

(TC1) and therefore |δmpr | = P2aP2b > |δexact |. Therefore, the dis-
continuous change from face1 to face2 occurs earlier, and not only

the contact point at the boundary of the polytope, but also δmpr
changes discontinuously when the lower point of the sphere arrives

at P
2b . This leads again to an unphysical response calculation.

This issue can be improved by smoothening the shapes, for ex-

ample, by moving the middle point of a tiny sphere with radius µ
over the shapes boundary and using the convex hull of this shape

for the contact handling, see for example [5, pp. 166-167]. This

smoothening can be implemented computationally by just adapting

the support point computation:

support(Ã,e) = support(A,e) + µAe,

where Ã is shape A smoothened with a tiny sphere of radius µA. In
such a case, two penetrating and continuously moving shapes A,B
will lead to a continuous penetration depth δexact = δmpr as long

as δexact < µA + µB .

5 ZERO-CROSSING FUNCTIONS
The distances δmpr,i shall be used as zero-crossing functions zi
(1b) for systems where many convex shapes may potentially col-

lide. A brute force method would be to use the distances between

any two shapes as zero-crossing functions. However, this appro-

ach is not practical for a larger number of shapes ns , because
O(dim (z)) = O(n2s ): The number of zero-crossing functions, as well

as the number of distance computations would grow quadratically

with the number of shapes.

To avoid these drawbacks, a new approach is proposed: Basically,

the user defines a fixed numbernz of zero-crossing functions, which
shall be used by the integrator. This means that at most nz shape

pairs can be in contact at the same time instant. If more shapes

get in contact, the simulation is halted with an error (alternatively,

the simulation is halted and restarted with an enlarged z vector).

Below, the following dimension information is used:

ns Number of shapes.
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nz Number of zero-crossing functions (for example nz = 100).

nn Number of distance computations in the narrow phase

(usually nn ≪ O(n2s )).

The following two functions shall be provided.
7
Hereby, C is a

structure that holds information about the actual contact situation

(e.g. all contact shapes), in particular z = C.z:

1. selectContactPairs!(C)
This function performs (a) a broad phase to determine which

shapes are potentially in contact to each other, (b) computes

the distances of these shapes in a narrow phase and (c) selects
the nz shape pairs with the smallest distances and orders them
according to their distances in O(nnloд(nz )) operations.8

This function is called before every integrator step.

2. getDistances!(C)
This function performs (a) a broad phase to determine which

shapes are potentially in contact to each other, (b) compu-

tes the distances of these shapes in a narrow phase and (c)

stores the distances of the contact pairs selected by the last
call of function selectContactPairs!(C) in z in O(nnloд(nz ))
operations.

9
This function is called whenever the integrator

requests a new zero-crossing function evaluation.

With function selectContactPairs!(C) new contact pairs are selected

before every new step of an integrator, and this selection is kept

until the end of the step. This is uncritical, at the initial step after

initialization and at the first step after an event occurred, say at

time instant tev : nz contact pairs are selected. For this selection

the zero-crossing functions z are computed at tev and one or more

times during the first integrator step of length h.
At the second and further steps after initialization or event-

restart the zi may characterize different contact pairs. However,

since no zero-crossing occurred in the previous step, the number

of negative and the number of positive zi are not changing. As

explained in section 4.3, the time instant of the zero-crossing functi-

ons is determined with algorithms that need only the sign of the

zero-crossing functions. Therefore, even if the meaning of the zero-

crossing functions might be changed before the beginning of a new

step, this does not matter, because the zero-crossing functions of

the new selection have the same signs as the zero-crossing functi-

ons evaluated with the selection from the previous step. This is

demonstrated at hand of the small example of table 1 (column z
contains the values of the zero-crossing functions at the respective

time instant; column ID contains integer values that characterizes

uniquely shape pairs that are potentially in contact to each other).

Column “ID’s from selection ti−1” contains shape pair ID’s and

associated z-values at the end of the previous step. The ID’s are

identical to the ID’s in column ti−1, but the z-values are (potentially)
different because the shapes are moving. However, the number of

negative and positive z-values are identical at both time instants,

because no zero-crossings took place in this step. Column “ID’s

from selection ti ” contains shape pair ID’s and associated z-values

7
As usual in Julia, function names with a ! at the end indicate that one or more of the

input arguments are changed by the function call.

8
If the distances of more than nz shape pairs are negative, an error is triggered; if the

number of shape pairs that are potentially in contact is less than nz , a positive dummy

value is provided for the corresponding zi .
9
An error is triggered, if one of the contact pairs has a negative distance and is not

selected by selectContactPairs!(C).

at the beginning of the next step (so the z-values are sorted accor-

ding to their distances). Here, no new distance computations are

performed, since during every step two data structures are utilized

to hold (a) the nz shape pairs ordered according to their actual

distance (= dict1 below) and (b) the nz shape pairs selected at the

beginning of the step (= dict2 below). Therefore, at beginning of

step ti , just the data structure of (b) is newly constructed from (a),

so (potentially) different shape pairs are utilized for z, but sign(zi )
is not changing.

ti−1 ti
ID’s from selection ti−1 ID’s from selection ti

z ID z ID z ID

-0.09 10 -0.08 10 -0.08 10

-0.003 5 -0.015 5 -0.002 3

-0.001 3 -0.002 3 -0.015 5

0.02 7 0.04 7 0.04 7

0.3 8 0.55 8 0.4 12

0.4 2 0.53 2 0.5 4

Table 1: Zero-crossing functions z and associated shape pairs
(ID’s) at two time instants.

The details of the two functions from above are presented below.

Furthermore, utility functions operating on balanced binary trees
are utilized. The following notation is used (based on Julia package

DataStructures
10
). Hereby, n ≤ nz is the current number of items

in the container:

1. dict is an instance of a balanced binary tree data structure

with (key,value) pairs ordered according to the keys.

2. insert!(dict ,key,value) inserts the key and the value into

dict in O(log(n)) operations. If the key is already present,

this overwrites the old value.

3. delete!(dict ,key) deletes the item whose key is key in

O(log(n)) operations.
4. (key,value) = last(dict) returns the item of dict with the

largest key in O(loд(n)) operations.

The balanced binary trees dict1,dict2 are stored in structure C:

dict1 Uses the nz smallest distances as keys. The values are uni-

que IDs, that identify the collision pairs. dict1 is updated
every time when computeDistances(C) is called.

dict2 Uses the nz IDs as keys that have the smallest distances.

The values are the indices of the collision pairs in the

z vector. dict2 is newly constructed every time when

selectContactPairs!(C) is called.

The flag distancesComputed (stored in structure C) is true after
function computeDistances(C) was called, and is set to false, after
shapes have changed their positions.

function selectContactPairs!(C)

if not distancesComputed
computeDistances!(C, false)

distancesComputed = true

end
for i=1:nz

10
http://datastructuresjl.readthedocs.io/en/latest/sorted_containers.html

http://datastructuresjl.readthedocs.io/en/latest/sorted_containers.html
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z[i] = keys(dict1)[i]

dict2[values(dict1)[i]] = i

end; end

function getDistances!(C)

if not distancesComputed
computeDistances!(C, true)

distancesComputed = true

end; end

function computeDistances!(C, getDist)

for i=1:length(C.contactShapes)-1

for j=i+1:length(C.contactShapes)

A = C.contactShapes[i], B = C.contactShapes[j]

if potentialCollision(A,B) # broad phase

δ = mpr(A,B) # narrow phase

ID = uniqueID(i,j)

if length(dict1) < nz

insert!(dict1,δ,ID)

else
(k,v) = last(dict1)

if δ < k && k ≤ 0.0

error("nz must be enlarged.")

elseif δ < k && k ≥ 0.0

delete!(dict1,k)

insert!(dict1,δ,ID)

end; end

if getDist # called by getDistances!()

# if ID of shape pair is in dict2,

# distance is stored in z

(isInside, zindex) = findID(dict2, ID)

if isInside

C.z[zindex] = δ

elseif δ < 0.0

error("nz must be enlarged.")

end; end; end; end; end; end

6 EXAMPLES
The algorithms proposed in the previous sections have been imple-

mented and evaluated in a prototype using the Julia programming

language [6].

The prototype consists of the following parts:

1. A higher level Julia interface to the DLR visualization pro-

gram SimVis [4, 14] to define and visualize simple shapes

such as spheres, boxes, cylinders, ..., as well as complex

shapes defined in various file formats.

2. An implementation of the improvedMPR algorithm of section 4

with support point computations for some of the simple

shapes of SimVis, as well as for polyhedrons defined with

Wavefront (*.obj) files. In the latter case distance computa-

tions with the MPR algorithm are either performed for the

convex hull of a polyhedron, or a concave polyhedron is ap-

proximately transformed to a set of convex polyhedrons with
program V-HACD

11
and distance computation is performed

for these convex polyhedrons. Additionally, zero-crossing

functions for the integrator are provided.

3. A small 3D multi-body program for tree-structured systems

with a few joint types has been implemented in Julia that

uses (1) and (2). Elastic collision forces are implemented

along the approach described in [23].

4. The multi-body program is utilized as model in the simu-

lation engine under development for Modia [10, 11] that is

based on the Sundials IDA integrator [15, 16]. Simulation

results are visualized (a) with one of the plot packages avai-

lable for Julia, especially PyPlot, and (b) with SimVis for 3D

animations.

Figure 8: Parts (rod, crank shaft, cylinder) falling on ground.

In figure 8, a typical animation of one of the examples is shown.

Here three parts, a piston rod, a part of a crank shaft (provided

as Wavefront-files) and a cylinder are falling on the ground, des-

cribed by the green box. The four parts collide with each other.

Distance computations and response calculations with the pene-

tration depths computed by the MPR algorithm are performed as

expected (for the rod and the crank shaft, distance computation is

performed for the convex hulls).

In figure 9, five objects are colliding: three convex shapes (cylin-

der, box and sphere) and two concave shapes. A concave shape is

approximated by a set of convex shapes (that are visualized with

different colors). Since the convex parts of one concave shape are

rigidly attached together, no collisions are possible between them.

This results in 79 shapes that can potentially collide with each other,

and in 651 potential shape pairs where the MPR algorithm might

be applied.

11
V-HACD: https://github.com/kmammou/v-hacd

https://github.com/kmammou/v-hacd
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Figure 9: Colliding convex and concave shapes.

7 CONCLUSION
In this paper improvements to the MPR algorithm are proposed to

compute the signed distance (= closest distance if not in contact

and penetration depth if in contact) between two convex shapes.

Especially, special collision situations are treated properly and ne-

wly introduced termination conditions speed up the algorithm. It

is shown that the computed signed distances can be used as zero-

crossing functions for variable-step integrators which are typically

used in object-oriented modeling languages in offline simulations.

Furthermore, a new method is proposed to use a small number of

zero-crossing functions, even if many shapes are present that can

potentially collide. This method uses standard broad and narrow

phases for the distance computation, but utilizes only the most re-

levant distances for the zero-crossing functions. The developments

have been evaluated with a prototype implemented in Julia.

Currently, only a very simple broad phase has been implemen-

ted. It is planned to make this implementation more efficient by

using octrees, along the approach proposed in [9]. Additionally, the

prototype will be made more complete to handle all shape types

supported by SimVis and by including it into Modia [10, 11] after

more involved tests have been performed.
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